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a b s t r a c t

The problem of testing for equality of autocorrelation coefficients
of two populations in multivariate data when errors are auto-
correlated is considered. We derive Rényi statistics defined as
divergences between unrestricted and restricted estimated joint
probability density functions andwe show that they are asymptot-
ically chi-square distributed under the null hypothesis of interest.
Monte Carlo simulation experiments are carried out to investigate
the behavior of Rényi statistics and to make comparisons with test
statistics based on the approach of Bhandary [M. Bhandary, Test
for equality of autocorrelation coefficients for two populations in
multivariate data when the errors are autocorrelated, Statistics &
Probability Letters 73 (2005) 333–342] for the problem under con-
sideration. Rényi statistics showed to have significantly better be-
havior.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In stationary time series models first order autocorrelation coefficients, ρ, measure the correlation
between observations in two arbitrary instants t − 1 and t . AR(1) processes (with |ρ| < 1) are
an example of this type of stochastic processes, which is widely used to model time series of
economic indicators. Statistical inference concerning ρ in one-sample problems has been extensively
studied and many statistics have been obtained (see for instance [1–10] and the references therein),
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however the extension to two-sample problems has not received the same attention. We only know
the test proposed by Bhandary [11]. This author considers the problem of testing the equality of
autocorrelation coefficients of two independent multinormal samples with AR(1) structure. In this
paper new statistics based on the Statistical Information Theory approach are introduced to treat the
same problem.
For testing a general hypothesis about parameters of one population, the likelihood ratio test

statistics is of general use. The likelihood ratio test statistic is a measure of deviation between the
maximum likelihood achieved under the null hypothesis and the maximum achieved over the whole
parameter space. Following this philosophy, a different measure of deviation, like a divergence, can
be used. Some tests based on divergences have already been proposed in the literature, and it has
been shown that in many cases they represent good competitors to classical tests. The history of the
minimum divergence statistical method is so extensive that it deserves a review paper itself. Here
we just would like to mention the concrete origins of the particular minimum divergence method for
continuous data used in this paper.
Our first available reference on this issue is [12], who suggested to test a simple null hypothesis

using the Kullback–Leibler divergence [13], providing its asymptotic distribution. Salicrú et al. [14]
and Morales et al. [15] extended these results to the problem of testing composite hypotheses,
using some families of divergences, like Csiszár’s φ-divergence [16] or (h, φ)-divergences [17].
Some generalizations to dependent data and to multi-sample problems are given by Morales et al.
[18,19] and Hobza et al. [20,21]. The first group of authors established a theoretical framework to
apply divergence-based methods to testing simple and composite hypotheses in general exponential
families. The second group concentrated its effort in testing hypotheses involving the parameters
of s population without assuming any exponential model. As both approaches are equivalent, the
test statistics appearing in this paper can be derived from any of the two. The first one makes a
particularization from the general exponential family to the normal multivariate distribution. The
second one requires similar calculations, as those appearing in [11], for the normal multivariate
distribution and this is the main reason to choose this alternative to write the paper.
A well-known subfamily of (h, φ)-divergences is the Rényi family, which was introduced by Rényi

[22] and defined in the nowadays formby Liese andVajda [23]. Among the test statistics obtained from
the Rényi divergences one can find the Kullback–Leibler statistic. An advantage of the Rényi family is
that spelled-out formulas of the divergences can be obtained for some commonly used probability
distributions. Some interesting books dealing with statistical applications of divergence measures are
[23–26].
In this paper, we treat the problem of testing the equality of two autocorrelation coefficients based

on two independent multivariate normal samples by means of statistics based on the Rényi family
of divergences. More formally, let us consider the sample x1, . . . , xn1 of n1 i.i.d. observations from
population 1 where

xi = (xi1, . . . , xip) ∼ Np(µ1,Σ1), i = 1, . . . , n1.

HereNp denotes the p-variate normal distributionwith themean vectorµ1 and the covariancematrix
Σ1 specified as µ1 = (µ11, . . . µ1p) andΣ1 = Σ(σ 21 , %1),where the matrixΣ has the form

Σ = Σ(σ 2, %) = σ 2


1 % %2 . . . %p−1

% 1 % . . . %p−2

. . . . . . . . . . . . . . .

%p−1 %p−2 . . . . . . 1

 . (1.1)

In the matrix Σ1, σ 21 represents the variance of each component and % is called the autocorrelation
coefficient. By y1, . . . , yn2 we denote the sample of n2 i.i.d. observations from population 2 where

yj = (yj1, . . . , yjp) ∼ Np(µ2,Σ2), j = 1, . . . , n2

andµ2 = (µ21, . . . , µ2p), Σ2 = Σ(σ 22 , %2). Samples xi (similarly yj) can be considered as realizations
of an AR(1) time series model with the structure

Xt = µ1t + ρ1(Xt−1 − µ1t−1)+ ut , where ut i.i.d. N(0, σ 21 (1− ρ
2
1 )).
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We are interested in testing the hypothesis

H0 : %1 = %2 versus H1 : %1 6= %2 (1.2)

under the assumption that σ 21 = σ
2
2 = σ

2. We treat this problem in two different ways. In Section 2
we apply the approach of Bhandary [11] and derive formulas of the Rényi statistics based on a
suitable transformation of data. The test statistic proposed by Bhandary is presented too. In Section 3
a ‘‘classical’’ approach is considered, i.e. we deal with the original non-transformed model and derive
formulas to calculate the H0-restricted and non-restricted MLEs. Further, formulas of the Rényi test
statistics for this case are presented and on the basis of results in [21] their asymptotic distribution is
given. In Section 4 we carry out simulation studies to determine the critical values for statistics based
on the Bhandary’s approach, to investigate a small sample behavior of the classical Rényi statistics and
to compare it with the performance of the Bhandary-based statistics.

2. Rényi test statistics based on Bhandary’s approach

To simplify the problem we follow the steps of [11] and do a suitable transformation of the data
using the matrix

T = T (%) =


√
1− %2 0 0 . . . 0
−% 1 0 . . . 0
0 −% 1 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . −% 1

 . (2.1)

The reason for such transformation is that TΣT ′ = σ 2(1− %2)Ip,where Ip denotes identity matrix of
order p×p, and sowe can obtain amodelwith diagonal covariancematrix. In this paper, the simplified
notation T1 = T (%1) and T2 = T (%2) is used.
The first transformed sample, corresponding to population 1, is denoted by u1, . . . , un1 with

u′i = T1x
′

i, ui = (ui1, . . . , uip) ∼ Np(µ∗1,Σ
∗

1 ),

i = 1, . . . , n1, and the transformedmean vector and covariancematrix areµ∗1 = T1µ
′

1 andΣ
∗

1 = η1Ip,
whereη1 = σ 2(1−%21). Similarly, the transformed sample frompopulation 2 is denoted by v1, . . . , vn2
with

v ′j = T2y
′

j , vj = (vj1, . . . , vjp) ∼ Np(µ∗2,Σ
∗

2 ),

j = 1, . . . , n2, and µ∗2 = T2µ
′

2 andΣ
∗

2 = η2Ip, where η2 = σ
2(1− %22).

First we derive formulas for non-restricted and H0-restricted MLEs of the parameters µ∗1,µ
∗

2, η1
and η2 of the transformed model. Maximizing the log-likelihood function based on the joint sample
w = (u1, . . . , un1 , v1, . . . , vn2) with respect to µ

∗

1,µ
∗

2, η1, η2 we get the non-restricted maximum
likelihood estimates

µ̂∗1 =
1
n1

n1∑
i=1

ui , u, µ̂∗2 =
1
n2

n2∑
j=1

vj , v (2.2)

and

η̂1 =
1
n1p

n1∑
i=1

(ui − u)(ui − u)′, η̂2 =
1
n2p

n2∑
j=1

(vj − v)(vj − v)′. (2.3)

Similarly, maximizing the log-likelihood functionwith respect toµ∗1,µ
∗

2 and η underH0 : %1 = %2,
where η = σ 2(1− %2) and % = %1 = %2, we get the restricted maximum likelihood estimates

µ̂∗01 = u, µ̂∗02 = v and η̂ =
1
n
(n1η̂1 + n2η̂2), (2.4)

where n = n1 + n2 and u, v, η̂1 and η̂2 are defined in (2.2) and (2.3).
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The Rényi divergence between two multivariate normal distributions Nd(ν1,11) and Nd(ν0,10)
is (see e.g. formula (3.3) on page 174 in [27] where it is derived for α ∈ [0, 1] or Proposition 2.22 on
page 43 in [23] where it is obtained more generally for exponential families and α ∈ R)

Da ((ν1,11), (ν0,10)) =
1
2

[
(ν1 − ν0)(a10 + (1− a)11)−1(ν1 − ν0)′

]
−
1
2

1
a(a− 1)

log
|a10 + (1− a)11|
|11|

1−a|10|
a

, (2.5)

a ∈ R−{0, 1}.We are interested in theRényi divergence between thenon-restricted and the restricted
likelihood of the joint samplew and thus we have, respectively

ν1 = (u, . . . , u, v, . . . , v)1×d , 11 = diag (̂η1, . . . , η̂1, η̂2, . . . , η̂2)d×d (2.6)

and

ν0 = ν1, 10 = diag (̂η, η̂, . . . , η̂)d×d (2.7)

for d = (n1+n2)p = np. Substituting these expressions in (2.5), we get the Rényi divergence between
the likelihoods

Da(̂η1, η̂2, η̂) , Da ((ν1,11), (ν0,10)) = −
1
2

1
a(a− 1)

[n1p log(âη + (1− a)̂η1)

+ n2p log(âη + (1− a)̂η2)− (1− a)p[n1 log η̂1 + n2 log η̂2] − anp log η̂]. (2.8)

Using the transformation matrices T1, T2 and the original samples, the estimates η̂1, η̂2, η̂ can be
written as

η̂1(%1) =
1
n1p

n1∑
i=1

(xi − x)T ′1T1(xi − x)′

=
1
n1p

[ n1∑
i=1

( p∑
r=1

(xir − xr)2 − 2%1
p∑
r=2

(xir − xr)(xi,r−1 − xr−1)+ %21
p−1∑
r=2

(xir − xr)2
)]
,

η̂2(%2) =
1
n2p

n2∑
j=1

(yj − y)T ′2T2(yj − y)′

=
1
n2p

[ n2∑
j=1

( p∑
s=1

(yjs − ys)
2
− 2%2

p∑
s=2

(yjs − ys)(yj,s−1 − ys−1)+ %
2
2

p−1∑
s=2

(yjs − ys)
2
)]

and

η̂(%1, %2) =
1
n
(n1η̂1(%1)+ n2η̂2(%2)).

Since the above expressions depend on the unknown parameters %1, %2 we now follow the steps of
[11]. Under the null hypotheses it holds %1 = %2 and thus we define the test statistics Ra as

Ra = max
−1≤%≤1

Da(̂η1(%), η̂2(%), η̂(%, %)), (2.9)

where Da(̂η1, η̂2, η̂) is defined in (2.8). The corresponding Rényi divergence α-test is

reject H0 if Ra > Ra,1−α, (2.10)

where the critical value Ra,1−α , giving a right tail probability of α, may be determined by simulation.
The Kullback–Leibler divergence can be obtained as a limit of the Rényi divergence Da for a → 1

and will be denoted by D1. Its formula for two multivariate normal distributions N(ν1,11) and
N(ν0,10) is (see e.g. [27] or [23])

D1 ((ν1,11), (ν0,10)) =
1
2

[
(ν1 − ν0)1

−1
0 (ν1 − ν0)

′
+ trace

(
1−10 11 − I

)
+ log

|10|

|11|

]
. (2.11)
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Plugging into this formula the expressions (2.6) and (2.7) we get the Kullback–Leibler divergence
between likelihoods

D1(̂η1, η̂2, η̂) , D1 ((ν1,11), (ν0,10)) =
1
2
(np log η̂ − n1p log η̂1 − n2p log η̂2). (2.12)

Let us note that D1(̂η1, η̂2, η̂) = − logΛ, where Λ is the likelihood ratio test statistics obtained on
page 338 of [11]. Similarly as in the previous case, the corresponding Kullback–Leibler divergence
α-test of H0 is defined by (2.9) and (2.10) for a = 1.
Under the present setup [11] derived a test statistic of the form

Λ∗ = λmax(AB−1), (2.13)

where λmax(D) is the largest eigenvalue of the matrix D and A, B are matrices from R2,2 of the form

A =


n1∑
i=1

p∑
r=1

(xir − xr)2 −

n1∑
i=1

p∑
r=2

(xir − xr)(xi,r−1 − xr−1)

−

n1∑
i=1

p∑
r=2

(xir − xr)(xi,r−1 − xr−1)
n1∑
i=1

p−1∑
r=2

(xir − xr)2

 ,

B =


n2∑
j=1

p∑
s=1

(yjs − ys)
2

−

n2∑
j=1

p∑
s=2

(yjs − ys)(yj,s−1 − ys−1)

−

n2∑
j=1

p∑
s=2

(yjs − ys)(yj,s−1 − ys−1)
n2∑
j=1

p−1∑
s=2

(yjs − ys)
2

 .
The corresponding Bhandary test of H0 is

reject H0 if λmax(AB−1) > λ1−α,

where the critical value λ1−α has again to be determined by simulation.

3. Classical approach

In this section we treat the problem of testing H0 by means of the Rényi divergence without the
simplifying transformation of themodel used by Bhandary. Consider the log-likelihood function based
on the original joint sample z = (x1, . . . , xn1 , y1, . . . , yn2), which is given by

` = −
np
2
log 2π −

n1
2
log |Σ1| −

n2
2
log |Σ2|

−
1
2

n1∑
i=1

(xi − µ1)Σ
−1
1 (xi − µ1)

′
−
1
2

n2∑
j=1

(yj − µ2)Σ
−1
2 (yj − µ2)

′. (3.1)

We describe a procedure to obtain MLEs of parameters under the hypothesis H0 : %1 = %2 = %
when log-likelihood function to bemaximized, `0, is obtained from (3.1)withΣ1 = Σ2 = Σ . Equating
to zero the first derivatives of `0 with respect to µ1 and µ2 one gets

µ̂1 = x =
1
n1

n1∑
i=1

xi and µ̂2 = y =
1
n2

n2∑
j=1

yj. (3.2)

The first derivatives of `0 with respect to σ 2 and % are

Sσ 2 =
∂`0

∂σ 2
= −

np
2σ 2
+
1
2σ 2

n1∑
i=1

(xi − µ1)Σ
−1(xi − µ1)

′

+
1
2σ 2

n2∑
j=1

(yj − µ2)Σ
−1(yj − µ2)

′ (3.3)
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and

S% =
∂`0

∂%
=
n(p− 1)%
1− %2

+
1
2

n1∑
i=1

(xi − µ1)Σ
−1 ∂Σ

∂%
Σ−1(xi − µ1)

′

+
1
2

n2∑
j=1

(yj − µ2)Σ
−1 ∂Σ

∂%
Σ−1(yj − µ2)

′. (3.4)

Themaximum likelihood estimates of σ 2 and % can be computed numerically using the Fisher-scoring
algorithm for which we need the Fisher information matrix

F =
(
Fσ 2σ 2 Fσ 2%
F%σ 2 F%%

)
. (3.5)

Calculating the expectations of the second order derivatives of the log-likelihood function `0 we get

Fσ 2σ 2 =
np
2σ 4

, Fσ 2% = −
n(p− 1)%
σ 2(1− %2)

and F%% =
n(p− 1)(1+ %2)

(1− %2)2
.

The iterative algorithm for computing the MLEs is then given by the equation

θ `+1 = θ ` + F−1(θ `)S(θ `), (3.6)

where θ =
(
σ 2, %

)′
, S =

(
Sσ 2 , S%

)′
. To initiate the algorithm we take the seeds

σ 20 =
1

p(n− 2)

{
n1∑
i=1

p∑
r=1

(xir − xr)2 +
n2∑
j=1

p∑
s=1

(yjs − ys)
2

}
, %0 = 0 (3.7)

for

xr =
1
n1

n1∑
i=1

xir and ys =
1
n2

n2∑
j=1

yjs.

In the case of no restriction on the parameters we get the same estimates µ̂1 and µ̂2 as in (3.2)
and the first derivatives of the log-likelihood function ` given in (3.1) with respect to the remaining
parameters σ 2, %1 and %2 are

Sσ 2 =
∂ l
∂σ 2
= −

np
2σ 2
+
1
2σ 2

n1∑
i=1

(xi − µ1)Σ
−1
1 (xi − µ1)

′
+
1
2σ 2

n2∑
j=1

(yj − µ2)Σ
−1
2 (yj − µ2)

′,

S%1 =
∂ l
∂%1
=
n1(p− 1)%1
1− %21

+
1
2

n1∑
i=1

(xi − µ1)Σ
−1
1
∂Σ1

∂%1
Σ−11 (xi − µ1)

′

and

S%2 =
∂ l
∂%2
=
n2(p− 1)%2
1− %22

+
1
2

n2∑
j=1

(yj − µ2)Σ
−1
2
∂Σ2

∂%2
Σ−12 (yj − µ2)

′.

The corresponding Fisher information matrix has the form

F =

Fσ 2σ 2 Fσ 2%1 Fσ 2%2
F%1σ 2 F%1%1 F%1%2
F%2σ 2 F%2%1 F%2%2


with

Fσ 2σ 2 =
np
2σ 4

, Fσ 2%k = −
nk(p− 1)%k
σ 2(1− %2k)

, k = 1, 2, F%1%2 = 0
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and

F%k%k =
nk(p− 1)(1+ %2k)

(1− %2k)2
, k = 1, 2.

In this case the updating equation of the Fisher-scoring algorithm is

θ `+1 = θ ` + F−1(θ `)S(θ `), (3.8)

where θ =
(
σ 2, %1, %2

)′ and S = (
S2σ , S%1 , S%2

)′. In the simulation experiment we take the seeds
%10 = %20 = 0 and σ 20 the same as in (3.7).
Let us denote by σ̂ 2, %̂1 and %̂2 the unrestrictedMLEs ofσ 2, %1 and%2 andby σ̂ 20 , %̂0 theH0-restricted

MLEs of the corresponding parameters σ 2, %. Let us also define d = (n1 + n2)p = np and

Σ̂0 = Σ(σ̂
2
0 , %̂0), Σ̂1 = Σ(σ̂

2, %̂1), Σ̂2 = Σ(σ̂
2, %̂2)

for matrixΣ introduced in (1.1). By substituting

11 = diag
(
Σ̂1, . . . , Σ̂1, Σ̂2, . . . , Σ̂2

)
d×d and 10 = diag

(
Σ̂0, . . . , Σ̂0

)
d×d

into the formula (2.5) (notice that ν1 = ν0) we get the Rényi divergence between the unrestricted and
the H0-restricted likelihoods of the joint sample z

Da = Da
(
Σ̂1, Σ̂2, Σ̂0

)
= −

1
2

1
a(a− 1)

{
n1 log

∣∣aΣ̂0 + (1− a)Σ̂1∣∣+ n2 log ∣∣aΣ̂0 + (1− a)Σ̂2∣∣
− (1− a)

[
n1 log

∣∣Σ̂1∣∣+ n2 log ∣∣Σ̂2∣∣]− an log ∣∣Σ̂0∣∣}.
Proposition 3.1. Under the present model and the assumption that n1, n2 go to infinity at the same rate,
i.e. there exist λ1, λ2 ∈ (0, 1), λ1 + λ2 = 1 such that n1/(n1 + n2) → λ1 and n2/(n1 + n2) → λ2
for n1 → ∞, n2 → ∞, the test statistics 2Da is asymptotically χ2 distributed with one degree of
freedom, i.e.

2Da
L
−→ χ21 as n1 →∞, n2 →∞.

Proof. The proof follows directly by checking the assumptions (A1)–(A2) and (H1)–(H3) of Theorem 1
in [21]. These assumptions basically deals with the integrability of the multivariate normal density of
original joint sample z . This has been done by applying straightforward and cumbersome calculations,
which are not presented here. �

The proposed ‘‘classical’’ Rényi test of H0 with asymptotic significance level α is

reject H0 if RCa , 2Da > χ21,1−α. (3.9)

Using the formula (2.11) we get the Kullback–Leibler divergence between likelihoods of the joint
sample z in the form

D1 = D1
(
Σ̂1, Σ̂2, Σ̂0

)
=
1
2

[
σ̂ 2

σ̂ 20 (1− %̂
2
0)

(
2n− p̂%0(n1%̂1 + n2%̂2)+ n(p− 2)(1+ %̂20)

)
− np

+ n log
∣∣Σ̂0∣∣− n1 log ∣∣Σ̂1∣∣− n2 log ∣∣Σ̂2∣∣].

Again, as in the case of the Rényi divergence, the corresponding test of asymptotic significance level
α is

reject H0 if RC1 , 2D1 > χ21,1−α.
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Table 1
Estimated critical values Ra,0.95 and λ0.95 of the test statistics Ra andΛ∗ for testing H0 (cf. (1.2)) at level α = 0.05 with sample
sizes n1 = 50, n2 = 50.

% a = 0.5 a = 0.75 a = 1 a = 1.25 a = 1.5 a = 1.75 a = 2 a = 2.25 Λ∗

0 4.635 4.590 4.558 4.539 4.532 4.538 4.558 4.591 1.540
0.1 4.540 4.496 4.466 4.447 4.441 4.447 4.466 4.498 1.528
0.2 4.718 4.671 4.638 4.618 4.611 4.618 4.638 4.673 1.532
0.3 4.788 4.740 4.706 4.685 4.678 4.685 4.706 4.741 1.539
0.4 5.064 5.010 4.972 4.949 4.942 4.949 4.972 5.012 1.562
0.5 5.205 5.148 5.108 5.084 5.076 5.084 5.108 5.151 1.567
0.6 5.645 5.578 5.531 5.503 5.493 5.502 5.531 5.581 1.597
0.7 5.981 5.907 5.854 5.822 5.811 5.822 5.854 5.910 1.630
0.8 6.724 6.630 6.564 6.524 6.511 6.523 6.564 6.635 1.718

4. Simulation experiment

To calculate the critical values, the sizes and powers of the considered statistics and to compare
their small sample behaviorwe carry out simulation studies using theMatlab software. The dimension
of the observation vectors is selected to be p = 4, the sample sizes are taken from the set (n1, n2) ∈
{(25, 25), (25, 50), (50, 50), (50, 100)} and the mean vectors and variances are chosen as µ1 =
µ2 = (0, 0, 0, 0) and σ1 = σ2 = 1. The Bhandary statistic Λ∗ (cf. (2.13)) and the Rényi statistics Ra
(cf. (2.9)) and RCa (cf. (3.9)) for the values of a from the setA = {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25}
are considered and the level of the tests is set to be α = 0.05.
To be able to use the Bhandary statistics Λ∗ and the Rényi statistics Ra we need first to calculate

the corresponding critical values. For this purposewe select the common values of the autocorrelation
coefficients, ρ = ρ1 = ρ2, from the set Ω = {0.1 · i | i = 0, 1, . . . , 8}. The critical values λ0.95 and
Ra,0.95 of the statistics Λ∗ and Ra, a ∈ A, are estimated as the 95th percentile of 10000 independent
realizations of the statistics Λ∗, Ra obtained from samples generated for selected combination of
parameters of the model. For illustration the calculated critical values for the case n1 = n2 = 50
are presented in the Table 1. More extensive study of the critical values can be found in [28].
We observe that the simulated critical values depend on the value of %. In practice, to apply this

approach it is necessary to: (a) estimate the autocorrelation coefficient from the joint sample, say ρ̂;
(b) apply the above described algorithm under the assumption ρ1 = ρ2 = ρ̂; and (c) apply the test
with the obtained critical value. From the algorithm to simulate the random samples it is further not
difficult to see that the critical values do not depend on the value of the parameter σ = σ1 = σ2.
Once critical values are estimated, the estimates of powers of the given statistics are computed

from the proportion of rejection of the null hypothesis using the estimated critical values.
For the study of powers two alternative lines to the null hypothesis H0 are selected

(a) %1 = 0.1 and %2 = 0.1+ 0.05i, i ∈ {−4,−3, . . . , 0, . . . , 4},
(b) %1 = 0.5 and %2 = 0.5+ 0.05i, i ∈ {−4,−3, . . . , 0, . . . , 4}

(4.1)

and the following algorithm is used:

1. For the concrete choice of %1, %2 and n1, n2 generate samples x1, . . . , xn1 and y1, . . . , yn2 .
2. Calculate values of the Bhandary statistic Λ∗ and of the Rényi statistics Ra for a ∈ A =

{0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25}. In the latter case the maximization over the region % ∈
(−1, 1) is done by using an algorithm based on the golden section search with parabolic
interpolation (see [29,30]).

3. From the samples calculate the restricted maximum likelihood estimates σ̂ 20 , %̂0 of the parameters
σ 2, % and the non-restrictedMLEs σ̂ 2, %̂1, %̂2 of the parameters σ 2, %1, %2 using the Fisher-scoring
algorithms (3.6) and (3.8), respectively.

4. Plugging these estimates into the corresponding formulas, the values of the test statistics RCa
(cf. (3.9)), a ∈ A, are obtained.
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Table 2
Minima and maxima of the estimated sizes α̂Ca of R

C
a for testing H0 (cf. (1.2)) at the level α = 0.05 based upon 10000 samples

of sizes n1 and n2 .

n1 n2 a = 0.5 a = 0.75 a = 1 a = 1.25 a = 1.5 a = 1.75 a = 2 a = 2.25

25 25 min 0.0601 0.0590 0.0584 0.0579 0.0574 0.0579 0.0582 0.0593
max 0.0730 0.0722 0.0721 0.0727 0.0737 0.0758 0.0778 0.0812

25 50 min 0.0589 0.0568 0.0556 0.0550 0.0537 0.0537 0.0539 0.0545
max 0.0759 0.0750 0.0752 0.0754 0.0761 0.0774 0.0793 0.0827

50 50 min 0.0521 0.0513 0.0507 0.0506 0.0505 0.0505 0.0507 0.0519
max 0.0609 0.0602 0.0602 0.0604 0.0606 0.0611 0.0621 0.0634

50 100 min 0.0525 0.0515 0.0506 0.0510 0.0513 0.0511 0.0515 0.0513
max 0.0605 0.0604 0.0604 0.0608 0.0610 0.0613 0.0627 0.0640

5. The steps 1–4 are repeated 104 times and the estimated powers β̂∗, β̂a and β̂Ca of the considered
test statisticsΛ∗, Ra and RCa , a ∈ A, are then calculated by the formulas

β̂∗ =
#{Λ∗ > λ0.95}

104
, β̂a =

#{Ra > Ra,0.95}
104

and β̂Ca =
#{RCa > χ21,0.95}

104
,

where #{condition} denotes the number of repetitions for which condition is true. Note that the
critical values λ0.95, Ra,0.95 depend on the sample sizes n1, n2 and %1, %2.

In the case of the statistics RCa it is not necessary to evaluate the critical values but since we use the
asymptotic distribution of the statistics before comparing the powers we should look at the sizes of
the corresponding tests. The estimated sizes α̂Ca of the Rényi statistics R

C
a are calculated by the steps

1,3,4,5 of the presented algorithm, the only difference is that samples are generated frommodels with
%1 = %2 = % ∈ Ω . Minimal and maximal values

min
%∈Ω

α̂Ca and max
%∈Ω

α̂Ca

of the estimated sizes are presented in the Table 2.
From this table one can see that the asymptotic distribution used to approximate the distribution

of our test statistics works quite well and for selected sample sizes the obtained estimated sizes are
reasonably close to the desired level 0.05. The values of parameter a for which the estimated sizes are
closer to 0.05 are most often those from the set {1, 1.25, 1.5}. Generally, the following trend can be
also observed: with increasing a the estimated sizes decrease till some value of a, usually one of those
from the above mentioned set, and then start to increase.
Let us now return to the study of powers. Since all the considered statistics Ra have almost the

same behavior in the selected models and for the sake of brevity we present in the Tables 3–6 just
the estimated powers for the statistics RCa and Λ

∗ and the sample sizes from the set (n1, n2) ∈
{(25, 25), (50, 100)}. Some of the estimated powers of the statistics Ra will be presented graphically
at the end of this section. For more detailed description of the experiment and more complete results
we refer to [28].
Concerning the powers of the statistics RCa the conclusion following from the presented tables

are similar to those obtained from tables for the statistics Ra not presented here. For equal sample
sizes the powers of all statistics RCa are very similar following the same trend as observed for sizes.
Reasonable choice thus would be to select the statistics with the best size, i.e. with a ∈ [1, 1.5]. For
unequal sample sizes and the case % = 0.1 we observe increasing powers with increasing a. In the
case %1 = 0.5 for %2 < %1 the powers decrease with increasing a and for %2 > %1 the powers increase
with increasing a. Since the differences are not dramatic in some sense optimal choice would be again
to select a ∈ [1, 1.5].
Since behavior of the Rényi tests is in both supposed approaches very similar, for a visual

comparison we select just one member of the family so that everything is more simple and
transparent. The value a = 1.25 was chosen as a member of the above proposed set and so behaviors
of the Rényi statistics R1.25, the classical Rényi statistics RC1.25 and the Bhandary statistics Λ

∗ are
compared.
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Table 3
Estimated powers β̂Ca and β̂

∗ of RCa and Λ
∗ for testing H0 (cf. (1.2)) at the level α = 0.05 based upon 10000 samples of sizes

n1 = 25, n2 = 25 and %1 = 0.1.

%2 a = 0.5 a = 0.75 a = 1 a = 1.25 a = 1.5 a = 1.75 a = 2 a = 2.25 Λ∗

−0.10 0.2557 0.2552 0.2553 0.2563 0.2590 0.2616 0.2666 0.2725 0.0992
−0.05 0.1726 0.1719 0.1720 0.1726 0.1749 0.1780 0.1827 0.1881 0.0698
0.00 0.1179 0.1172 0.1171 0.1180 0.1193 0.1210 0.1247 0.1288 0.0578
0.05 0.0818 0.0807 0.0809 0.0811 0.0828 0.0853 0.0883 0.0927 0.0478
0.10 0.0712 0.0703 0.0704 0.0708 0.0722 0.0743 0.0774 0.0807 0.0440
0.15 0.0813 0.0806 0.0805 0.0812 0.0825 0.0855 0.0884 0.0917 0.0522
0.20 0.1190 0.1186 0.1185 0.1196 0.1206 0.1229 0.1258 0.1297 0.0645
0.25 0.1889 0.1875 0.1874 0.1876 0.1897 0.1925 0.1970 0.2011 0.0901
0.30 0.2862 0.2844 0.2842 0.2857 0.2882 0.2930 0.2971 0.3043 0.1292

Table 4
Estimated powers β̂Ca and β̂

∗ of RCa and Λ
∗ for testing H0 (cf. (1.2)) at the level α = 0.05 based upon 10000 samples of sizes

n1 = 25, n2 = 25 and %1 = 0.5.

%2 a = 0.5 a = 0.75 a = 1 a = 1.25 a = 1.5 a = 1.75 a = 2 a = 2.25 Λ∗

0.30 0.3724 0.3700 0.3691 0.3700 0.3718 0.3749 0.3794 0.3833 0.0657
0.35 0.2530 0.2512 0.2504 0.2502 0.2517 0.2536 0.2564 0.2602 0.0595
0.40 0.1552 0.1534 0.1526 0.1529 0.1534 0.1553 0.1572 0.1601 0.0473
0.45 0.0867 0.0862 0.0856 0.0852 0.0858 0.0865 0.0878 0.0900 0.0461
0.50 0.0622 0.0615 0.0609 0.0608 0.0614 0.0624 0.0632 0.0648 0.0503
0.55 0.0935 0.0910 0.0906 0.0903 0.0902 0.0909 0.0922 0.0945 0.0730
0.60 0.1874 0.1849 0.1841 0.1838 0.1838 0.1842 0.1864 0.1897 0.1240
0.65 0.3737 0.3715 0.3693 0.3685 0.3689 0.3704 0.3733 0.3781 0.2536
0.70 0.6290 0.6263 0.6238 0.6228 0.6238 0.6259 0.6282 0.6317 0.4748

Table 5
Estimated powers β̂Ca and β̂

∗ of RCa and Λ
∗ for testing H0 (cf. (1.2)) at the level α = 0.05 based upon 10000 samples of sizes

n1 = 50, n2 = 100 and %1 = 0.1.

%2 a = 0.5 a = 0.75 a = 1 a = 1.25 a = 1.5 a = 1.75 a = 2 a = 2.25 Λ∗

−0.10 0.5292 0.5288 0.5287 0.5303 0.5327 0.5347 0.5370 0.5407 0.2132
−0.05 0.3432 0.3426 0.3421 0.3426 0.3441 0.3461 0.3482 0.3516 0.1391
0.00 0.1830 0.1822 0.1817 0.1820 0.1822 0.1834 0.1851 0.1867 0.0889
0.05 0.0907 0.0902 0.0898 0.0899 0.0900 0.0904 0.0909 0.0932 0.0579
0.10 0.0596 0.0593 0.0592 0.0594 0.0597 0.0600 0.0612 0.0624 0.0501
0.15 0.0928 0.0928 0.0931 0.0939 0.0949 0.0965 0.0983 0.1007 0.0664
0.20 0.1827 0.1836 0.1845 0.1862 0.1879 0.1901 0.1928 0.1955 0.1076
0.25 0.3487 0.3497 0.3511 0.3539 0.3563 0.3605 0.3646 0.3709 0.1868
0.30 0.5630 0.5647 0.5678 0.5703 0.5735 0.5778 0.5827 0.5890 0.3286

Table 6
Estimated powers β̂Ca and β̂

∗ of RCa and Λ
∗ for testing H0 (cf. (1.2)) at the level α = 0.05 based upon 10000 samples of sizes

n1 = 50, n2 = 100 and %1 = 0.5.

%2 a = 0.5 a = 0.75 a = 1 a = 1.25 a = 1.5 a = 1.75 a = 2 a = 2.25 Λ∗

0.30 0.7521 0.7483 0.7449 0.7419 0.7400 0.7375 0.7362 0.7350 0.1247
0.35 0.5392 0.5344 0.5289 0.5253 0.5215 0.5178 0.5158 0.5136 0.0914
0.40 0.3079 0.3040 0.2994 0.2946 0.2913 0.2890 0.2871 0.2851 0.0668
0.45 0.1318 0.1283 0.1258 0.1227 0.1202 0.1184 0.1172 0.1164 0.0505
0.50 0.0561 0.0553 0.0551 0.0550 0.0549 0.0554 0.0554 0.0563 0.0512
0.55 0.1198 0.1221 0.1238 0.1258 0.1281 0.1315 0.1344 0.1377 0.1028
0.60 0.3605 0.3626 0.3671 0.3721 0.3770 0.3842 0.3908 0.3975 0.2758
0.65 0.7196 0.7222 0.7263 0.7306 0.7349 0.7396 0.7460 0.7515 0.6138
0.70 0.9499 0.9509 0.9520 0.9534 0.9544 0.9558 0.9572 0.9591 0.9087
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Fig. 1. Powers of the selected statistics for n1 = 25, n2 = 25, and %1 = 0.1.

Fig. 2. Powers of the selected statistics for n1 = 25, n2 = 25, and %1 = 0.5

It is interesting to note that the value a = 1.25was found in [31] in goodness-of-fit formultinomial
populations as the value of ‘‘a’’ with higher order of convergence of the exact distribution to the
asymptotic one.
Powers of the selected statistics are represented in Figs. 1–4. From these figureswe deduce that the

classical Rényi statistics RC1.25 has the best behavior in the sense of powers, for all presented situations.
For the case %1 = 0.1 the Rényi statistics R1.25 is slightly better than the Bhandary statisticΛ∗ and for
%1 = 0.5 it is better for %2 < %1 and slightly worse for %2 > %1.
In general, the Bhandary statistic Λ∗ showed a poor behavior on the left hand side of the null

hypothesis H0 (i.e. %2 < %1) which is caused by its asymmetric definition (cf. (2.13)). Some attention
should be thus paid to the order of the samples (i.e. which sample is sample 1) when using the
Bhandary statistic.
As a conclusion we can say that the classical Rényi statistic RCa with a ∈ [1, 1.5] can be

recommended for use. The advantage of these statistics is that we need not simulate critical values
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Fig. 3. Powers of the selected statistics for n1 = 50, n2 = 100, and %1 = 0.1.

Fig. 4. Powers of the selected statistics for n1 = 50, n2 = 100, and %1 = 0.5.

and take care about the order of the samples as in the case of the Bhandary statistics and moreover
they are expected to provide considerably higher powers. On the other hand theMLEs of the unknown
parameters must be calculated numerically but the formulas are given and are simple and the Fisher-
scoring algorithm converges very quickly in the supposed normal model.
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